МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ДОНЕЦКОЙ НАРОДНОЙ РЕСПУБЛИКИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕСИОНАЛЬНОГО ОБРАЗОВАНИЯ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ к выполнению индивидуальных работ по дисциплине «Системы защиты биосферы. Технология очистки газовых выбросов»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ДОНЕЦКОЙ НАРОДНОЙ РЕСПУБЛИКИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕСИОНАЛЬНОГО ОБРАЗОВАНИЯ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

КАФЕДРА «ПРИКЛАДНАЯ ЭКОЛОГИЯ И ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ»

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

к выполнению индивидуальных работ по дисциплине «Системы защиты биосферы. Технология очистки газовых выбросов»

для обучающихся по направлению подготовки 20.03.01 «Техносферная безопасность» профиль «Инженерная защита окружающей среды» всех форм обучения

PACCMOTPEHO

на заседании кафедры прикладной экологии и охраны окружающей среды Протокол № 6 от 21.01.2021 г.

Утверждено на заседании учебно-издательского совета ДОННТУ Протокол № 2 от 24.02.2021 г.

Донецк 2021 УДК 504.7(076)+66.074(076) M54

Составители:

Ганнова Юлия Николаевна — кандидат химических наук, доцент кафедры прикладная экология и охрана окружающей среды ГОУВПО «ДОННТУ»; Горбатко Сергей Витальевич — кандидат технических наук, доцент кафедры прикладная экология и охрана окружающей среды ГОУВПО «ДОННТУ».

М54 Методические рекомендации к выполнению индивидуальных работ по дисциплине «Системы защиты биосферы. Технология очистки газовых выбросов»: для обучающихся по направлению подготовки 20.03.01 «Техносферная безопасность» профиль «Инженерная защита окружающей среды» всех форм обучения / ГОУВПО «ДОННТУ», каф. прикладной экологии и охраны окружающей среды; сост.: Ю.Н. Ганнова, С.В. Горбатко. — Донецк: ДОННТУ, 2021. — Систем. требования: Acrobat Reader. — Загл. с титул. экрана.

Методические рекомендации разработаны с целью оказания помощи обучающимся в усвоении теоретического материала и получении практических навыков по дисциплине «Системы защиты биосферы. Технология очистки газовых выбросов», которые содержат задания для проведения индивидуальных работ по курсу.

УДК 504.7(076)+66.074(076)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1. ВЫПОЛНЕНИЕ ИНДИВИДУАЛЬНОЙ РАБОТЫ	6
1.1 Перечень вопросов для выполнения контрольной работы	6
1.2 Перечень задач для выполнения контрольной работы	7
1.3 Варианты, номера вопросов и задач для выполнения индивидуально	οй
работы	8
2. СОДЕРЖАНИЕ И ОБЪЕМ ИНДИВИДУАЛЬНОЙ РАБОТЫ	9
2.1 Содержание отдельных разделов работы	9
2.1.1 Содержание	9
2.1.2 Введение	10
2.1.3 Описание, принцип действия и устройство рассматриваемой	
установки (аппарата) (описание технологической схемы)	10
2.1.4 Выводы	10
2.1.5 Перечень ссылок	
2.1.6 Приложения	
3. ПРАВИЛА ОФОРМЛЕНИЯ ИНДИВИДУАЛЬНОЙ РАБОТЫ	10
ПРИЛОЖЕНИЕ А	13
ПРИЛОЖЕНИЕ Б	
ПЕРЕЧЕНЬ РЕКОМЕНДОВАННОЙ ЛИТЕРАТУРЫ	15

ВВЕДЕНИЕ

Изучение дисциплины «Системы защиты биосферы. Технология очистки газовых выбросов» базируется на знаниях, полученных при изучении неорганической и органической химии, физической химии, процессов и аппаратов химических производств, техники экологически чистых производств и др.

В свою очередь дисциплина «Системы защиты биосферы. Технология очистки газовых выбросов» является основой для изучения ряда дисциплин процесса подготовки, закладывает основы для выполнения курсового проектирования и выполнения квалификационной работы.

Целью изучения дисциплины «Системы защиты биосферы. Технология очистки газовых выбросов» является изучение основных теоретических и практических аспектов защиты атмосферы от промышленных загрязнений.

Основные задачи изучения дисциплины:

- систематизация и обобщение существующих сведений по защите воздушного бассейна от вредных выбросов;
- изучение физико-химических основ, технологических схем и оборудования для инженерных средств защиты атмосферы от загрязнения вредными веществами на примере самых важных промышленных процессов химических производств.

1. ВЫПОЛНЕНИЕ ИНДИВИДУАЛЬНОЙ РАБОТЫ

Номер варианта выбирается путем складывания последних двух цифр номера зачетной книжки студента.

1.1 Перечень вопросов для выполнения контрольной работы

- 1) Обоснуйте очистку газовых выбросов от диоксида серы с помощью известняка: физико-химические основы метода, описание технологической схемы, преимущества и недостатки метода.
- 2) Обоснуйте магнезитный метод очистки газовых выбросов от диоксида серы: физико-химические основы метода, описание технологической схемы, преимущества и недостатки метода, область использования.
- 3) Проанализировать методы очистки дымовых газов ТЭС от диоксида серы, выбор метода, физико-химические основы метода, описание технологической схемы
- 4) Дать оценку аммиачно-циклического метода очистки газовых выбросов от диоксида серы: физико-химические основы метода, описание технологической схемы, область использования.
- 5) Проанализируйте аммиачно-сернокислотный метод очистки газов от диоксида серы физико-химические основы метода, описание технологической схемы, оборудование.
- 6) Проанализируйте контактный метод очистки газов от диоксида серы на ванадиевом катализаторе: физико-химические основы метода, описание технологической схемы, оборудование.
- 7) Обосновать железно-содовый метод очистки газов от сероводорода: физико-химические основы метода, описание технологической схемы, оборудование.
- 8) Проанализируйте методы очистки газов от сероводорода в подвижном слое активированного угля: физико-химические основы метода, описание технологической схемы, оборудование, область использования.
- 9) Обосновать варианты схем очистки газов от сероводорода оксидами железа: физико-химические основы метода, описание технологической схемы, оборудование.
- 10) Обоснуйте очистку природного газа от соединений серы цеолитами: физико-химические основы метода, описание технологической схемы, методы регенерации адсорбента.
- 11) Обоснуйте поглощение диоксида углерода раствором МЭА: физикохимические основы метода, описание метода «МЭА-ГИАП», область использования.
- 12) Проанализируйте поглощение диоксида углерода растворами карбонатов: физико-химические основы метода, описание технологической схемы, оборудование.
 - 13) Обоснуйте поглощение диоксида углерода органическими

растворителями. Процесс «Ректизол»: физико-химические основы, описание метода, область использования.

- 14) Дать оценку средствам извлечения диоксида углерода из дымовых газов. Проанализируйте и опишите технологическую схему поташного метода, физико-химические основы метода.
- 15) Обоснуйте термическое обезвреживание нитрозных газов. Опишите установку термического разложения оксидов азота. Область использования.
- 16) Проанализируйте метод каталитического восстановления оксидов азота с использованием газа-восстановителя метана: физико-химические основы метода, описание технологической схемы, оборудование, область использования.
- 17) Обосновать аммиачно-каталитический метод очистки газов от оксидов азота: физико-химические основы метода, описание технологической схемы, оборудование.
- 18) Обосновать способ дожигания оксида углерода: физико-химические основы метода, описание технологических схем, оборудование.
- 19) Дайте оценку способам нейтрализации выбросов двигателей внутреннего сгорания: физико-химические основы методов, оборудование.
- 20) Обоснуйте очистку газа от соединений фтора в производстве суперфосфата: физико-химические основы метода, описание технологической схемы, оборудование.
- 21) Проанализируйте метод очистки газовых выбросов от хлора в производстве хлорной извести: физико-химические основы метода, описание схемы, область использования.
- 22) Проанализируйте методы очистки газовых выбросов от паров брома и йода: физико-химические основы методов, область использования.
- 23) Обоснуйте методы очистки газовых выбросов от ртути. Проанализируйте и опишите технологическую схему очистки хлорной известью, физико-химические основы метода.
- 24) Проанализируйте кислотно-пиролюзитный метод очистки газовых выбросов от ртути: физико-химические основы метода, область использования.

1.2 Перечень задач для выполнения контрольной работы

- 1) Определить объем суспензии оксида кальция, которая содержит 150 г оксида кальция CaO на 1 л раствора, необходимой для очистки 100 м³ газовой смеси с содержанием 0,5 % об. диоксида серы.
- 2) Определить количество серной кислоты, которое можно получить из 100 м³ дымовых газов, если они содержат 0,5 % об. диоксида серы, а степень преобразования диоксида серы в серную кислоту составляет 75 %.
- 3) Определить количество поглощенного диоксида серы 2000 м^3 19 %-го раствора карбоната калия (плотность раствора $1,21 \text{ г/м}^3$).
- 4) Определите количество раствора, содержащего 25 % карбоната калия, необходимого для очистки 100 м³ газовой смеси с содержанием 0,5 % об.

диоксида углерода.

- 5) Определить количество аммиака, необходимого для реализации аммиачно-каталитического метода обезвреживания оксидов азота в $10000~{\rm m}^3$ дымовых газов, если они содержат 0.5~% об. оксида азота NO и 0.05~% об. диоксида азота NO₂.
- 6) Определить количество сероводорода (в кг), который поглощается 1000 кг суспензии, содержащей 15 % гидроокида железа Fe(OH)₃ при степени очистки, равной 0,95. Рассчитать количество продуктов реакции (в кг) и объем очищенного газа при содержании сероводорода в газе 0,75 % об.
- 7) Определить количество диоксида углерода (в кг), который поглощается 1000 м^3 25 %-ного раствора карбоната калия (плотность 1,24 т/м³), при степени очистки 0,90. Рассчитать количество продуктов реакции (в кг) очищенного газа, если содержание диоксида углерода в очищаемом газе равняется 7,5 % об.
- 8) Определите количество аммиака (в кг), необходимое для аммиачно-каталитического метода восстановления оксидов азота, которые содержатся в 1000 нм^3 дымовых газов ТЭС, если дымовые газы содержат 0.5 % об. оксида азота NO и 0.05 % об. диоксида азота NO₂. Степень очистки от оксида азота NO составляет 0.80, а от диоксида азота NO₂ 0.95. Степень использования аммиака составляет 7.5%.
- 9) Рассчитайте количество (в кг) 15 %-ного раствора гидроксида аммония NH_4OH , необходимого для поглощения диоксида серы из 1000 нм^3 дымовых газов, которые содержат 0.3 % об. диоксида серы SO_2 , при степени очистки 0.95. Рассчитайте количество полученных продуктов реакции (в кг).
- 10) Определить количество серной кислоты (в кг), которое можно получить путем переработки диоксида серы, извлеченного из 1000 м^3 дымовых газов, содержащих 0,4% об. диоксида серы, 20%-ным раствором сульфита аммония, если степень преобразования диоксида серы в серную кислоту составляет 85%. Рассчитать количество израсходованного раствора и количество полученных продуктов реакции поглощения SO_2 (в кг).
- 1.3 Варианты, номера вопросов и задач для выполнения индивидуальной работы

Варианты, номера вопросов и задач для выполнения индивидуальной работы приведены в таблице 1.1.

Таблица 1.1 — Варианты, номера вопросов и задач для выполнения контрольной работы

No	Номер		No	Ног	мер
варианта	вопрос	задача	варианта	вопрос	задача
1	1,11,18	1,10	11	1,14,21	1,7
2	2,12,19	2,9	12	2,15,22	2,8
3	3,13,20	3,8	13	3,16,23	3,9

4	4,14,21	4,7	14	4,17,24	4,10
5	5,15,22	5,6	15	5,11,19	5,7
6	6,16,23	1,6	16	6,12,20	1,8
7	7,17,24	2,7	17	7,13,21	2,10
8	8,11,18	3,8	18	8,14,22	3,6
9	9,12,19	4,9	19	9,15,23	4,6
10	10,13,20	5,10	20	10,16,24	5,9

2. СОДЕРЖАНИЕ И ОБЪЕМ ИНДИВИДУАЛЬНОЙ РАБОТЫ

Работа носит описательный характер. Целью является рассмотрение устройства и принципов работы основного технологического оборудования, используемого как в технологических схемах, так и оборудования, используемого для переработки твердых отходов.

Работа должна иметь объем 12-15 страниц формата A4 с учетом приложений.

Работа состоит из следующих структурных элементов:

- титульный лист;
- содержание;
- введение;
- основная часть;
- выводы;
- перечень ссылок;
- приложения.

В приложении А приведен пример оформления титульного листа индивидуальной работы.

Основная часть работы должна включать следующий раздел:

- описание, принцип действия и устройство установки (аппарата);
- 2.1 Содержание отдельных разделов работы

2.1.1 Содержание

В содержании приводится весь материал в виде названия разделов, подразделов, пунктов, подпунктов (если они имеют название) с указанием номера страницы, с которой начинается материал, а также введение, выводы, перечень ссылок и названия приложений.

2.1.2 Введение

Введение располагают на отдельном листе. В ведение кратко излагают оценку современного состояния проблемы, пути решения поставленных задач, актуальность работы, область применения.

2.1.3 Описание, принцип действия и устройство рассматриваемой установки (аппарата) (описание технологической схемы)

Приводят анализ информации о существующих установках и аппаратах. В разделе необходимо рассмотреть особенности конструкции и описать принцип действия аппаратов, привести изображение аппаратов или установок.

2.1.4 Выводы

Выводы должны содержать краткие результаты, полученные при выполнении работы, оценка эффективности и преимуществ рассмотренного оборудования.

Выводы могут быть оформлены в виде перечисления.

2.1.5 Перечень ссылок

Должен содержать перечень источников информации, которые использованы во время выполнения работы. Источники информации следует располагать в порядке упоминания ссылок в тексте.

Сведения об источниках информации (их библиографическое описание), которые внесенные в перечень ссылок, необходимо оформлять согласно примеру, приведённому в приложении Б.

2.1.6 Приложения

В приложениях размещают вспомогательный материал, необходимый для отображения полноты выполненной работы (схемы, спецификации, таблицы, формулы, стандарты, методики и т.д.).

3. ПРАВИЛА ОФОРМЛЕНИЯ ИНДИВИДУАЛЬНОЙ РАБОТЫ

Индивидуальную работу печатают с помощью текстового редактора Word (шрифт Times New Roman, размер шрифта 14). Все листы должны иметь отступления: слева - 25 мм, с других сторон 20 мм.

Абзацный отступ 1,25 см, между срочный интервал - полуторный.

Нумерация листов сквозная. Первый лист - титульный, но номер на нем не ставят.

На следующей странице размещают содержание.

Введение начинается с новой страницы. Введение (а также выводы и список литературы) не нумеруют. Слово «ВВЕДЕНИЕ» пишут большими буквами выравнивание по центру.

Основную часть работы (которая состоит из разделов и подразделов) продолжают на странице. Разделы должны быть пронумерованы арабскими цифрами. После номера раздела точку не ставят.

Подразделения нумеруют арабскими цифрами в пределах раздела. Номер подраздела состоит из номера раздела и номера подраздела (в рамках этого раздела), которые разделены между собой точкой. Наименование подразделов пишут строчными буквами (кроме первой - прописной) с абзаца. Пункты (если они есть) нумеруют в пределах подраздела. Пункты могут иметь название, которое пишут с абзаца с первой большой буквы.

Не допускается перенес слов в названиях разделов, подразделов, пунктов, таблиц, рисунков.

Расстояние между заголовком и текстом одна пустая строка. Расстояние между заголовками такое, как в тексте. Между заголовками, которые расположены последовательно, а также между несколькими строками одного заголовка расстояние такое же, как в тексте.

Формулы от текста отделяют одной строкой. Объяснение значения символов и числовых коэффициентов проводятся непосредственно под формулой в той последовательности, в которой они представлены в формуле, с абзаца с указанием размерности в системе СИ. Первая строка пояснения начинается с абзаца со слова «где», после которого двоеточие не ставят. Пояснение каждого символа и числового коэффициента надо давать с новой строки.

Таблицы нумеруют в пределах раздела арабскими цифрами. Номер таблицы состоит из номера раздела и порядкового номера таблицы, которые разделены точкой. Над таблицей дают надпись «Таблица» с указанием порядкового номера. После номера таблицы ставится тире, а дальше название таблицы.

При переносе таблицы слово «Таблица» с номером и ее название приводят только над первой частью таблицы, над другими частями пишут «Продолжение таблицы» и дают ее номер без названия. Заголовки граф таблицы пишут с большой буквы, а под заголовком - с маленькой буквы, если они составляют одно предложение с заголовком.

Рисунки нумеруют в пределах раздела. Номер рисунка состоит из номера раздела и порядкового номера рисунка, разделенных точкой. Под рисунком с левого края листа пишут слово «Рисунок» с указанием номера рисунка, после номера рисунка ставят тире и приводят название рисунка. Пояснительный текст к рисунку располагают непосредственно под рисунком над его названием.

На таблицы и рисунки должны быть ссылки. Таблицы и рисунки размещают непосредственно после первого упоминания в тексте, или (если они не помещаются на этом листе) со следующего листа.

При ссылках на разделы, подразделы, пункты, подпункты, иллюстрации, таблицы, формулы, уравнения, приложения указывают их номер. К примеру: «в разделе 4 описано. . . », «. . . смотри 2.1. . . », «. . . в соответствии с 3.1.2. . . », « На рисунке 2.1. . . », «. . . в таблице 6.1. . . », «. . . (см. табл. 3.4) », «. . . (См. Рис. 2.1, кривая 4) », «. . . по формуле (3.2). . . », «. . . в уравнение (1.5) - (1.8) ... », «. . . в приложении. . . ».

Выводы размещают после основной части работы на отдельном листе. Слово «ВЫВОДЫ» пишут большими буквами посередине строки.

Список литературы должен включать источники, которые использованы при выполнении индивидуальной работы. Источники в перечне ссылок приводят в том порядке, в котором они впервые упоминаются в тексте. При ссылке в тексте на источники следует приводить порядковый номер из перечня ссылок, который выделен двумя парными квадратными скобками. К примеру: "... в работах [1, 4-7]», «... приведены в [15]».

Приложения размещают в работе после перечня ссылок. Каждое приложение должно начинаться с новой страницы, иметь заголовок, написанный вверху малыми буквами с первой большой симметрично относительно текста страницы на отдельной строке. Посередине строки над заголовком малыми буквами с первой большой должно быть написано слово «Приложение ...» и большая буква, обозначающая приложение. Приложение стоит обозначать последовательно большими буквами кириллического алфавита, например "ПРИЛОЖЕНИЕ А". Даже одно приложение обозначается как - Приложение А.

Если в работе как приложение используют документ, имеющий самостоятельное значение, его оформляют в соответствии с требованиями к документу данного вида, его копию помещают в записке без изменений в оригинале. Перед копией документа помещают отдельный лист, на котором посередине печатают слово «ПРИЛОЖЕНИЕ» и его название (при наличии).

На приложения в тексте должны быть ссылки.

ПРИЛОЖЕНИЕ А

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕСИОНАЛЬНОГО ОБРАЗОВАНИЯ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Прикладной экологии и охраны окружающей среды»

ИНДИВИДУАЛЬНАЯ РАБОТА

по дисциплине: «Системь	ы защиты биосферы. Технология очистки газовых выбросов»
на тему: «	»
	Студента (ки) курса, группы
	направления подготовки
	(фамилия и инициалы)
	Руководитель
	(должность, ученое звание, научная степень, фамилия и инициалы
	Национальная шкала
	Количество балов:
	Оценка:

ПРИЛОЖЕНИЕ Б

Пример оформления перечня ссылок

Библиографическое описание в перечне ссылок приводится в порядке, в котором они впервые упоминаются в тексте.

Примеры подачи информации об источниках в списке ссылок: книги

Набиванец, Б.И. Аналитическая химия среды / Б.И. Набиванец, В.В. Сухан, Л.В. Карабина. - К: Лыбидь, 1996. - 304 с.

Химическая технология керамики и огнеупоров / под ред. П.П. Буфенкова. - М: Стройиздат, 1972. - 552 с.

Бурдун, Г. Справочник по международной системе единиц / Г. Бурдун.- 3-е, доп. изд.- М .: Изд-во стандартов, 1980.- 232 с. статьи

Лысенко, Ю.А. Кислородная стехиометрии / Ю.А. Лысенко, А.Ю. Шевченко // Журнал общей химии. - 1984. - Т. 54. - № 2. - с. 1-8. стандарты

ГОСТ 2.105-95. Межгосударственный стандарт. Единая система конструкторской документации. Общие требования к текстовыми документам. - Взамен ГОСТ 2.105-79, ГОСТ 2.906-71; введ. 1996-07-01.- Минск: Межгосударственный совет по стандартизации, метрологии и сертификации, 1996. - 27 с.

ПЕРЕЧЕНЬ РЕКОМЕНДОВАННОЙ ЛИТЕРАТУРЫ

- 1. Сухая очистка газов от пыли. Примеры расчета аппаратов : учебное пособие / . Саратов : Вузовское образование, 2016. 38 с. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/52013.html
- 2. Белоусов В.В. Теория процессов и аппаратов очистки газов : учебнометодическое пособие / Белоусов В.В.. Москва : Издательский Дом МИСиС, 2008. 64 с. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/97900.html
- 3. Процессы и аппараты защиты окружающей среды: аппараты очистки газов: учебное пособие / Ю.М. Кочнов [и др.].. Москва: Издательский Дом МИСиС, 2001. 161 с. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/97890.html
- 4. Мухутдинов А.А. Физико-химические методы очистки газов / Мухутдинов А.А., Степанова С.В., Сольяшинова О.А.. Казань : Казанский национальный исследовательский технологический университет, 2012. 138 с. ISBN 978-5-7882-1254-8. Текст : электронный // Электроннобиблиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/64032.html

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

к выполнению индивидуальных работ по дисциплине «Системы защиты биосферы. Технология очистки газовых выбросов»

Составители:

Ганнова Юлия Николаевна - кандидат химических наук, доцент кафедры прикладная экология и охрана окружающей среды ГОУВПО «ДОННТУ»; Горбатко Сергей Витальевич — кандидат технических наук, доцент кафедры прикладная экология и охрана окружающей среды ГОУВПО «ДОННТУ».

Ответственный за выпуск:

Шаповалов Валерий Васильевич – доктор химических наук, профессор, заведующий кафедрой «Прикладная экология и охрана окружающей среды» ГОУВПО «ДОННТУ».